

From Myth to Reality: Resistance Training in Children

 Hasan Ulas Yavuz¹ and **Pembe Hare Yigitoglu Ceto²**

¹Assoc. Prof. Dr., Faculty of Sport Sciences, Near East University, North Cyprus.

²Assist. Prof. Dr., Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Near East University North Cyprus.

ARTICLE INFORMATION

Original Research Paper

Doi:

Received December. 2020

Accepted January. 2021

Keywords:

Resistance training;
athletic performance;
child athlete;
adolescent.

ABSTRACT

Children have been participating in sports with the increasing numbers day by day. With the increasing rivalry, they are trying to find the ways to improve their performance to the best possible. As a result, the number of children who are adding resistance training to their training routines is also increasing. This raises myths about the harmful and risky nature of resistance training on children with many questions about its safety and effectiveness. Recent studies can remove doubts about the risk of injury, uselessness and ineffectiveness. With the proves from many studies for some decades, it is now accepted that properly controlled and supervised resistance training during childhood is not only safe and effective but also recommended by the world's leading healthcare and sports organizations for improving health and athletic performance. In the light of the scientific data, possible benefits, risks and application areas of resistance training for child athletes are discussed in this review.

Introduction

Resistance training refers to the type of exercise that requires the muscles to contract against the opposite force created by some type of resistance. The resistance can be created by body weight, free weights, weight machines, hydraulic machines, elastic tubes, bands etc. If resistance is created through weights or specific machines, the term 'weight training' can also be used in the same sense. Strength training, on the other hand, is used in a broader sense and refers to any type of training used to increase physical strength.¹ Resistance training is one of the most popular and effective methods of increasing sportive performance and is widely practiced by high school, university and professional athletes.² Resistance training is known to increase the strength of adults and this improvement has been shown to arise from muscle hypertrophy, structural changes in muscle fibers, and neuromuscular and metabolic adaptations.³⁻⁵ However, resistance training in children is a controversial topic. In early studies on the effects of resistance training on children, it was reported that these adaptations could not be seen, mainly due to insufficient androgen in the circulation.^{6,7} Furthermore, resistance training hasn't been recommended for children and adolescents for a long time for its possibility of causing injuries.⁸

Clinicians once considered open growth plates in children as a definite contraindication for resistance training due to the risk of injury to the growing sensitive bones. In fact, the American Academy of Pediatrics reported that it would be impossible to increase strength or muscle mass in prepuberty due to the lack of circulating androgen hormones, making weight lifting an unnecessary risk for children.⁹

The fear that resistance training will damage the growth plate is not supported by scientific studies; on the contrary, the mechanical stress on the growth plate caused by resistance training or high-intensity sports such as weightlifting has been shown to be beneficial in bone formation and development.¹⁰⁻¹⁶ In addition, there is no scientific evidence that resistance training can adversely affect the linear development of the bone or cause short stature in adulthood.^{17,18}

In light of all these studies, the traditional fears and false concerns that resistance training will damage the developing skeleton have been replaced by reports stating that childhood may be an opportunity to create bone mass and improve bone structure through physical activities that contain weights.^{19,20}

Children must have sufficient muscle strength to be competent in basic movement skills.²¹ Insufficient muscle strength leads to difficulties in basic movement skills at an early age and as a result, physical and psychosocial problems may develop in participating in physical activities in adolescence and adulthood.²²

Effects on Athletic Performance

Besides the arguments that resistance training will increase the risk of injury in children, there is also debate about the effectiveness of resistance training. It has long been known that resistance training can increase strength and hypertrophy in adults. Despite increasing evidence that resistance training in children can lead to enhance performance by improving strength, speed, power, and other related features, the degree of hypertrophy due to androgen hormone deficiency especially in prepubertal children has been a matter of debate among researchers.²³⁻²⁶

Recent studies clearly show that appropriate resistance training improves strength and strength-related features at all ages.^{1,27} It has been clearly demonstrated that well-designed and well-supervised resistance training can make significant improvements in muscular fitness even in 5-year-olds.^{28,29}

The strength increase seen in prepubertal children seems to be related to the development of the central nervous system rather than hypertrophy.³⁰ Especially the increase in motor unit participation, firing frequency, synchronization and improvement in neural myelination increase the neuromuscular performance.^{31,32} For this reason, trainers working with prepubertal children should avoid training methods aimed at increasing muscle mass, and focus on strength development and movement ability.³³ In adolescence, in addition to neural development, structural changes due to testosterone, growth hormone and insulin-like growth factor 1 (IGF-1) increase are also of great importance.³⁰ Accordingly, while the gender effect is observed to be minimal in absolute and relative strength gains with resistance training in prepubertal children, the gender effect and gender-related strength difference are more pronounced as the age progresses.^{33,34}

Strength training in adolescent soccer players has been shown to improve maximal strength and muscular endurance and provide better body composition, and different types of resistance training (daily wavy, linear) have similar effects on maximal strength in adolescents.^{36,37}

In the literature, gains in maximum strength vary between 10 to 70% depending on different factors such as training program type, duration, and exercise type used for strength measurement. Usually, sedentary children typically have 30-40% expectation of strength gain with the beginner's program.³⁸

In addition, fundamental motor skills like jumping, running, hopping etc. as main locomotor skills and object control skills like kicking, catching, throwing etc. must be gained by the end of adolescence.³⁹ Recent studies have shown that resistance training improved power generation, jumping, sprinting and agility performances in pre and post-pubertal children.^{1,22,40-43}

Effects on the General Health

In addition to its positive effects on the athletic performance, studies have shown many other benefits of resistance training in terms of protecting and improving health. Results of studies conducted with resistance training in obese children are promising in terms of combating childhood obesity. In these studies, positive effects on the general body composition⁴⁴ in obese children, abdominal and body fat decrease⁴⁵, insulin⁴⁶ and leptin⁴⁷ sensitivity increase in overweight adolescents, improvements in cardiac functions⁴⁸ and improvement in self-perception in obese children were shown.⁴⁹ It has also been reported that the participation of overweight and obese children in resistance training can increase their muscle strength, motor coordination and self-confidence in the physical activity.⁴⁴

In addition, it has also shown positive effects in the development of body composition⁵⁰, preventing and treating sports-related injuries^{22,51}, long-term protection of the health, cardiovascular fitness and blood lipid profiles in healthy children and child athletes.^{22,51-52} Besides its benefits on the physical health, different studies have shown that resistance training improves children's self-confidence and has positive effects on their psychological health.^{50,53,54} It has also been reported that resistance training in the form of CrossFit training can improve mental health in adolescents with risks of psychological disorders.⁵⁵

As the positive effects of resistance training on strength and physical performance emerged, private patient groups were also started to be studied. There have been many studies recently on the effects of resistance training on children with cerebral palsy. As a result of these studies, although its effects on mobility are controversial, positive effects on muscle strength, general functions and mood were reported.⁵⁶⁻⁵⁸

Contrary to the historical belief that resistance training in children will increase the risk of injury, recent studies have revealed that resistance training can prevent sports-related injuries in child athletes.⁵⁹⁻⁶² It has been reported that focusing on risk factors for sports-related injuries (such as low fitness levels, muscle imbalances, training errors) resistance training can reduce overuse injuries by up to 50%.^{63,64}

In addition to all these, studies conducted in different countries show that strength parameters in children tend to decrease gradually in time.⁶⁵⁻⁶⁷ Well-designed and properly followed resistance exercises can be applied as an effective method to prevent this undesirable tendency.³⁸ Resistance training is especially important as it can be taken up by all children regardless of their individual abilities and body composition.^{37,68} Physical education teachers, child fitness specialists, healthcare professionals and trainers working with child athletes should know the basic principles of child development and plan their exercise prescriptions to meet the individual needs of the child and independent of the chronological age due to the individual nature of growth and development.³⁸

Despite all these positive effects, it is vital to ensure that children can safely coordinate and be aware of how they move with weights before resistance training.⁶⁹ For this purpose, 'Resistance training skills battery for children' was developed⁵³ to evaluate children's individual and general resistance training skills and it was emphasized in later studies⁶⁹ that this battery can be used by anyone to determine the competence and readiness of children before resistance training is planned.

With the increasing number of scientific evidences many meta-analyses⁷⁰⁻⁷² and reviews⁷³ have been conducted for resistance training in children most recently. They all unveiled the benefits and the effectiveness of the resistance training on children and adolescents.

Conclusion

Correctly planned and properly supervised resistance training is very safe also for children. Contrary to historical misconceptions, it has been clearly shown that the injury rates during resistance training are not higher than other training and sports activities, and that they do not have a negative effect on children's growth and development. In addition, it

appears to be effective and safe in terms of preventing sports-related injuries and improving the overall health.

Today, when resistance training is applied under the right technical instructions and supervision, it is recognized and recommended as safe and effective by the world's leading medical and sporting communities such as American Academy of Family Physicians (AAFP), American Academy of Orthopaedic Surgeons (AAOS), American Academy of Pediatricians (AAP), Australian Strength and Conditioning Association (ASCA), American College of Sports Medicine (ACSM), American Medical Society for Sports Medicine (AMSSM), American Orthopaedic Society for Sports Medicine (AOSSM), American Osteopathic Academy of Sports Medicine (AOASM), The National Strength and Conditioning Association (NSCA), and The President's Council on Physical Fitness and Sports, United Kingdom Strength and Conditioning Association (UKSCA), Canadian Society for Exercise Physiology (CSEP).^{38,67,68}

References

1. Behringer M, vomHeede A, Yue Z, Mester J. effects of resistance training in children and adolescents: a meta-analysis. *pediatrics*. 2010;126(5):e1199-210.
2. Faigenbaum AD, Bradley DF. Strength training for the young athlete. *orthopaedic physical Therapy Clinics of north America*. 1998;7:67-90.
3. Staron rS, Karapondo DL, Kraemer WJ, Fry AC, Gordon Se, Falkel Je, et al. Skeletal muscle adaptations during early phase of heavy- resistance training in men and women. *Journal of Applied physiology*. 1994;76(3): 1247-55.
4. Smith rC, rutherford oM. The role of metabolites in strength training. *european Journal of Applied physiology and occupa- tional physiology*. 1995;71(4):332-6.
5. McCall Ge, Byrnes WC, Dickinson A, pattany pM, Fleck SJ. Muscle fiber hypertrophy, hy- perplasia, and capillary density in college men after resistance training. *Journal of Applied physiology*. 1996;81(5):2004-12.
6. Vrijens J. Muscle strength development in the pre-and post-pubescent age. in: *pediatric Work physiology*. Karger publishers, Vol. 11; 1978. p.152-8.
7. Docherty D. The effects of variable speed re- sistance training on strength development in prepubertal boys. *Journal of Human Move- ment Studies*. 1987;13:337-82.
8. Faigenbaum AD. Strength training for children and adolescents. *Clin Sports Med*. 2000; 19(4):593-619.
9. American Academy of paediatrics. Weight training and weight lifting: information for the paediatrician. *phys Sportsmed*. 1983;11:157- 61.
10. Álvarez-San emeterio C, Antuñano np, López-Sobaler AM, González-Badillo JJ. ef- fect of strength training and the practice of Alpine skiing on bone mass density, growth, body composition, and the strength and power of the legs of adolescent skiers. *The Journal of Strength & Conditioning research*. 2011; 25(10):2879-90.
11. Bass SL. The prepubertal years. *Sports Me- dicine*. 2000;30(2):73-8.
12. Quiterio AL, Carnero eA, Baptista FM, Sardinha LB. Skeletal mass in adolescent male athletes and nonathletes: relationships with high-impact sports. *The Journal of Strength & Conditioning research*. 2011; 25(12):3439-47.
13. Fuchs rK, Bauer JJ, Snow CM. Jumping im- proves hip and lumbar spine bone mass in prepubescent children: a randomized con- trolled trial. *Journal of Bone and Mineral re- search*. 2001;16(1):148-56.
14. Hind K, Burrows M. Weight-bearing exercise and bone mineral accrual in children and ado- lesscents: a review of controlled trials. *Bone*. 2007;40(1):14-27.
15. Nichols DL, Sanborn CF, Love AM. resistance training and bone mineral density in adolescent females. *The Journal of pediatrics*. 2001;139(4):494-500.
16. Witzke KA, Snow CM. effects of polymeric jump training on bone mass in adolescent girls. *Medicine and Science in Sports and exercise*. 2000;32(6):1051-7.

17. Malina rM. Weight training in youth-growth, maturation, and safety: an evidence-based review. *Clinical Journal of Sport Medicine*. 2006;16(6):478-87.
18. Falk B, Eliakim A. resistance training, skeletal muscle and growth. *pediatric endocrinology reviews: per*. 2003;1(2):120-7.
19. Gunter KB, Almstedt HC, Janz KF. physical activity in childhood may be the key to optimizing lifespan skeletal health. *exercise and Sport Sciences reviews*. 2012;40(1):13.
20. Vicente-rodríguez G. How does exercise affect bone development during growth? *Sports Medicine*. 2006; 36(7):561-9.
21. Lopes VP, Rodrigues LP, Maia JA, Malina RM. Motor coordination as predictor of physical activity in childhood. *Scandinavian Journal of Medicine & Science in Sports*. 2011;21(5): 663-9.
22. Faigenbaum AD, Kraemer WJ, Blimkie CJ, Jeffreys I, Micheli LJ, Nitka M, et al. Youth resistance training: updated position statement paper from the national strength and conditioning association. *The Journal of Strength & Conditioning research*. 2009; 23: S60-79.
23. Blimkie C. Age and Sex-Associated variation in strength during childhood. *perspectives in exercise and Science and Sport Medicine*. Benschmark press: Indianapolis in. 1989.
24. Fukunaga T, Funato K. The effects of resistance training on muscle area and strength in prepubescent age. *The Annals of physiological Anthropology*. 1992;11(3):357-64.
25. Matos N, Winsley RJ. Trainability of young athletes and overtraining. *Journal of Sports Science & Medicine*. 2007;6(3):353.
26. Mersch F, Stoboy H. Strength training and muscle hypertrophy in children. *Children and exercise XIII*. Oseid S, Carlsen K, eds. Champaign, IL: Human Kinetics Books; 1989. p.165- 82.
27. Bailey R, Collins D, Ford P, Macnamara Á, Toms M, Pearce G. Participant development in sport: An academic review. *Sports Coach UK*. 2010:1-34.
28. Annesi JJ, Westcott WL, Faigenbaum AD, Unruh JL. effects of a 12-week physical activity protocol delivered by YMCA after-school counselors (Youth Fit for Life) on fitness and self-efficacy changes in 5–12-year-old boys and girls. *research Quarterly for exercise and Sport*. 2005;76(4):468-76
29. Kaufman LB, Schilling DL. Implementation of a strength training program for a 5-year-old child with poor body awareness and developmental coordination disorder. *Physical Therapy*. 2007;87(4):455-67.
30. Malina RM, Bouchard C, Bar-or o. Growth, maturation, and physical activity. *Human Kinetics*; 2004.
31. Kraemer WJ, Fry AC, Frykman PN, Conroy B, Hoffman J. Resistance training and youth. *Pediatric exercise Science*. 1989;1(4):336-50.
32. Ramsay JA, Blimkie CJ, Smith KA, Garner SC, Macdougall JD, Sale DG. Strength train- ing effects in prepubescent boys. *Medicine and Science in Sports and exercise*. 1990;22(5):605-14.
33. Lloyd RS, Oliver JL. The Youth physical development model: a new approach to long-term athletic development. *Strength and Conditioning Journal*. 2012; 34:37-43.
34. Lillegard WA, Brown EW, Wilson DJ, Henderson R, Lewis E. Efficacy of strength training in prepubescent to early postpubescent males and females: effects of gender and maturity. *Pediatric Rehabilitation*. 1997;1(3):147-57.
35. McKay CD, Cumming SP, Blake T. Youth sport: Friend or Foe? *Best Pract Res Clin Rheumatol*. 2019 Feb;33(1):141-157. doi: 10.1016/j.berh.2019.01.017. Epub 2019 Feb 21. PMID: 31431268.
36. Ruivo RM, Carita AI, Pezarat-Correia P. Effects of a 16-week strength-training program on soccer players. *Science & Sports*. 2016; 31(5):e107-13.
37. Harries SK, Lubans DR, Callister R. Comparison of resistance training progression models on maximal strength in

sub-elite adolescent rugby union players. *Journal of Science and Medicine in Sport*. 2016;19(2):163-9.

38. Lloyd RS, Faigenbaum AD, Myer GD, Stone MH, Oliver JL, Jeffreys I, et al. UKSCA position statement: Youth resistance Training. UKSCA 2012; 26:1-14.

39. Lloyd R, Moeskops S, Granacher U. Motor skill training for young athletes, in: R. Lloyd, J. Oliver (Eds.) *Strength and conditioning for young athletes*, Routledge, New York (2020).

40. Collins H, Booth JN, Duncan A, Fawkner S. The effect of resistance training interventions on fundamental movement skills in youth: a meta-analysis, *Sports medicine - open* 5 (2019) 17. <https://doi.org/10.1186/s40798-019-0188-x>

41. Hammami M, Negra Y, Shephard RJ, Chelly MS. The effect of standard strength vs. contrast strength training on the development of sprint, agility, repeated change of direction, and jump in junior male soccer players. *Journal of strength and conditioning research*, 2017; 31:901–912.

42. R.S. Lloyd, J.M. Radnor, M.B. De Ste Croix, J.B. Cronin, J.L. Oliver, Changes in Sprint and Jump Performances After Traditional, Plyometric, and Combined Resistance Training in Male Youth Pre- and Post-Peak Height Velocity, *Journal of strength and conditioning research*. 2016; 30:1239–1247.

43. Harries SK, Lubans DR, Callister R. Resistance training to improve power and sports performance in adolescent athletes: A systematic review and meta-analysis. *Journal of Science and Medicine in Sport*. 2012; 15:532–40.

44. Sgro M, McGuigan MR, Pettigrew S, newton RU. The effect of duration of resistance training interventions in children who are overweight or obese. *The Journal of Strength & Conditioning research*. 2009; 23(4):1263–70.

45. Watts K, Beye P, Siasarikas A, Davis EA, Jones TW, o'Driscoll G, et al. exercise training normalizes vascular dysfunction and improves central adiposity in obese adolescents. *Journal of the American College of Cardiology*. 2004;43(10):1823-7.

46. Shaibi GQ, Cruz ML, Ball GD, Weigensberg MJ, Salem GJ, Crespo NC, et al. Effects of resistance training on insulin sensitivity in overweight Latino adolescent males. *Medicine and Science in Sports and exercise*. 2006;38(7): 1208.

47. Lau PW, Kong Z, Choi CR, Clare CW, Chan DF, Sung RY, et al. Effects of short-term resistance training on serum leptin levels in obese adolescents. *Journal of Exercise Science & Fitness*. 2010;8(1):54-60.

48. Naylor LH, Watts K, Sharpe JA, Jones TW, Davis EA, Thompson A, et al. Resistance training and diastolic myocardial tissue velocities in obese children. *Medicine and Science in Sports and Exercise*. 2008;40(12):2027-32.

49. Yu CC, Sung RY, Hau KT, Lam PK, Nelson EA, So RC. The effect of diet and strength training on obese children's physical self-concept. *Journal of Sports Medicine and Physical Fitness*. 2008;48(1):76.

50. Velez A, Golem DL, Arent SM. The impact of a 12-week resistance training program on strength, body composition, and self-concept of Hispanic adolescents. *The Journal of Strength & Conditioning research*. 2010; 24(4):1065-73.

51. McCambridge TM, Stricker PR. Strength training by children and adolescents. *Pediatrics*. 2008;121(4):835-40.

52. Young WK, Metzl JD. Strength training for the young athlete. *Pediatric Annals*. 2010;39(5): 293-9.

53. Lubans Dr, Smith JJ, Harries SK, Barnett LM, Faigenbaum AD. Development, test-retest reliability, and construct validity of the resistance training skills battery. *The Journal of Strength & Conditioning Research*. 2014;28(5):1373-80.

54. Padilla-Moledo C, Ruiz Jr, Ortega FB, Mora J, Castro-piñero J. Associations of muscular fitness with psychological positive health, health complaints, and health risk behaviors in Spanish children and adolescents. *The Journal of Strength & Conditioning research*. 2012;26(1):167-73.

55. Eather N, Morgan PJ, Lubans DR. Effects of exercise on mental health outcomes in adolescents: findings from the CrossFit™ teens randomized controlled trial. *Psychology of Sport and Exercise*. 2016; 26:14-23.

56. Fernandes MV, Maifrino LB, Monte KN, Araújo RC, Mochizuki L, Ervilha UF. Effectiveness of resistance training exercises in spastic diplegia cerebral palsy: a review. *Braz J Morphol Sci*. 2012;29(3):125-8.

57. Boyd RN. Functional progressive resistance training improves muscle strength but not walking ability in children with cerebral palsy. *Journal of physiotherapy*. 2012;58(3):197.

58. Park EY, Kim WH. Meta-analysis of the effect of strengthening interventions in individuals with cerebral palsy. *research in Developmental Disabilities*. 2014;35(2):239-49.

59. Arnason A, Andersen TE, Holme I, Engebretsen L, Bahr R. Prevention of hamstring strains in elite soccer: an intervention study. *Scandinavian Journal of Medicine & Science in Sports*. 2008;18(1):40-8.

60. Clark EM, Tobias JH, Murray L, Boreham C. Children with low muscle strength are at an increased risk of fracture with exposure to exercise. *J Musculoskelet neuronal interact*. 2011;11(2):196-202.

61. Emery CA, Meeuwisse WH. The effectiveness of a neuromuscular prevention strategy to reduce injuries in youth soccer: a cluster randomised controlled trial. *British Journal of Sports Medicine*. 2010;44(8):555-62.

62. Gabbe BJ, Branson R, Bennell KL. A pilot randomised controlled trial of eccentric exercise to prevent hamstring injuries in community-level Australian Football. *Journal of Science and Medicine in Sport*. 2006;9(1-2):103-9.

63. Micheli L. preventing injuries in sports: What the team physician needs to know. *FIMS Team physician Manual*. 2006:555-72.

64. Valovich McLeod TC, Decoster LC, Loud KJ, Micheli LJ, Parker JT, Sandrey MA, et al. National Athletic Trainers' Association position statement: prevention of pediatric overuse injuries. *Journal of Athletic Training*. 2011;46(2): 206-20.

65. Cohen DD, Voss C, Taylor MJ, Delextrat A, Ogunleye AA, Sandercock GR. Ten-year secular changes in muscular fitness in English children. *Acta paediatrica*. 2011;100(10): e175-7.

66. Runhaar J, Collard DC, Singh AS, Kemper HC, Van Mechelen W, Chinapaw M. Motor fitness in Dutch youth: differences over a 26-year period (1980–2006). *Journal of Science and Medicine in Sport*. 2010;13(3):323-8.

67. Fraser BJ, Blizzard L, Tomkinson GR, Lycett K, Wake M, Burgner D, Ranganathan S, et all. The great leap backward: changes in the jumping performance of Australian children aged 11-12-years between 1985 and 2015, *Journal of Sports Sciences*. 2019; 37: 748–754.

68. Behm DG, Faigenbaum AD, Falk B, Klentrou P. Canadian Society for exercise physiology position paper: resistance training in children and adolescents. *Applied physiology, nutrition, and Metabolism*. 2008;33(3):547-61.

69. Furzer BJ, Bebich-Philip MD, Wright KE, Reid SL, Thornton AL. Reliability and validity of the adapted Resistance Training Skills Battery for Children. *J Sci Med Sport*. 2018 Aug;21(8):822-827. doi: 10.1016/j.jsams.2017.12.010. Epub 2017 Dec 29. PMID: 29331404.

70. Garcia-Hermoso A, Ramirez-Campillo R, Izquierdo M. Is Muscular Fitness Associated with Future Health Benefits in Children and Adolescents? A Systematic Review and Meta-Analysis of Longitudinal Studies, *Sports medicine (Auckland, N.Z.)* 2019; 49 1079–1094.

71. Moran J, Sandercock G, Ramirez- Campillo R, Clark CCT, Fernandes JFT, Drury B. A Meta-Analysis of Resistance Training in Female Youth: Its Effect on Muscular Strength, and Shortcomings in the Literature, *Sports medicine (Auckland, N.Z.)* 2018; 48: 1661–1671.

72. Peitz M, Behringer M, Granacher U. A systematic review on the effects of resistance and plyometric training on physical fitness in youth- What do comparative studies tell us? *PloS one*, 13 (2018) e0205525.

73. H. Chaabene, M. Lesinski, D.G. Behm, U. Granacher, Performance and health-related benefits of youth resistance training, *Sports Orthopaedics and Traumatology*. 2020; 36 (3): 231-240,ISSN 0949-328X,